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Abstract. A concave function defined on a polytope may have many local minima (in fact every
extreme point may be a local minimum). Sufficient conditions are given such that if they are satisfied
at a point, this point is known to be a global minimum. It is only required to solve a single linear
program to test whether the sufficient conditions are satisfied. This test has been incorporated into an
earlier algorithm to give improved performance. Computational results presented show that these
sufficient conditions are satisfied for certain types of problems and may substantially reduce the effort
needed to find and recognize a global minimum.
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1. Introduction

This paper considers the problem of finding sufficient conditions for obtaining a
solution to a linearly constrained concave global minimization problem of the
form
global min ¢(x, y)= ¢(x) + d'y, (GP)
(x,y)EQ
where the nonlinear term ¢(x) can be expressed in separable form. That is,

n

o(x) =2 ¢(x,)

i=1
and each ¢(x;) is concave. Additionally, Q={(x, y):A;x+ A,y<b, x=0,
y =0} is assumed to be nonempty and bounded, and x ER", yER? A, eR™™",
A,ER™? peER” and dER”.

Problem (GP) is a constrained combinatorial optimization problem for which
many well known problems are special cases. For example, the concave quadratic
global minimization problem is a special case of problem (GP) for which
@(x) = (1/2)x'Ox + ¢'x where Q ER"™" is symmetric and negative definite (¢(x)
can be transformed into separable forms using the eigenstructure of Q). This
concave quadratic global minimization problem is known to be NP-hard (Phillips
1988), and hence it follows that problem (GP) is NP-hard. From a computational
viewpoint, this means that, in the worst case, the computing time required to
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obtain a solution will grow exponentially with the number of nonlinear variables.
An important property of problem (GP), which is basic to many solution methods
(Phillips 1988), is that the global minimum point is always found at a vertex of the
convex polytope (). For this reason, linear programming is an essential part of any
computational algorithm to solve problem (GP).

Additionally, many practical problems in engineering design can be formulated
as problem (GP). For example, a class of synomial optimization problems, for
which the theory of geometric programming was originally developed (Duffin,
Peterson, and Zener 1967), can be transformed into problems of the form (GP).
Such problems occur in engineering design, where the function to be minimized
can often be expressed as the sun of component costs of the form

u; = ctiy? L tm
where the constants a,; are specified (possibly negative) real constants, and the
design parameters ¢, are assumed to be positive variables. If the constants ¢, <0
for all i, then this function in turn can easily be converted, using standard
techniques (Phillips and Rosen 1990), to a concave function in the form required
by problem (GP).

In this paper sufficient conditions for recognizing a solution to the global
minimization problem (GP) are presented and justified. It is shown that the use
of these sufficient conditions to recognize a global minimum can significantly
accelerate the solution for certain types of problems of the form (GP). This is
supported by computational results for problems where the linear terms tend to
dominate the nonlinear terms in the objective function. Thus it is shown that
these sufficient conditions are satisfied for certain types of problems, and that they
can be used to substantially improve the performance of an earlier algorithm.
Hence, a new algorithm is presented which incorporates a termination test based
on satisfaction of the sufficient conditions.

The sufficient conditions can be best understood in terms of solving a multiple
cost row linear program with O(2") cost rows. However, it will be shown that it is
only necessary to solve a single linear program to determine if the sufficient
conditions are satisfied. If they are not satisfied, this information can frequently
be used to obtain improved bounds and possibly eliminate part of the feasible set
from further consideration.

In the next section, the sufficient conditions are presented and justified. In
Section 3, a detailed description of the new algorithm is presented. In Section 4,
error bounds are used to show that an e-approximate solution is obtained after a
finite number of steps. A simple numerical example is given in Section 5. Finally,
in Section 6 the computational results are presented. These results are summar-
ized in two tables. In Table I results are given for the most difficult type of
concave quadratic problem; that is, where the quadratic term dominates and has
its maximum at an interior feasible point. It is seen that the new algorithm only
gives a faster solution in a few cases. It gives much faster solution times when the
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linear term dominates, as shown in Table II. Comparisons were made for five
problems and the new algorithm was faster in all cases. In two of the give
problems the time was reduced by a factor of three.

2. Sufficient Conditions

Let (x*, y*) € {2 be a global optimum solution, with corresponding function value
¥* = ¢(x*, y*), to the problem (GP). Let R CR" be a hyperrectangle defined by

R={x:B;,<x;<PBy,, i=1,...,n},

where the lower and upper bounds 8; and B, are given (see Section 3 for details
on how to easily obtain these bounds). Also, define the linear underestimator of
¢(x) over R to be

I'(x)= Z y(x,)

where each ¥,(x,) is a linear function such that ¥,(x;) < ¢,(x;) for all x, €[B; , B, ],
Y(B;) = #(B:), and %(B;) = ¢(B;,). Hence, I'(x) is a linear underestimator of
#(x) over R which agrees with ¢(x) at all vertices of R. Denote y,(x;) = ¢, x; + %,
for i=1,...,n, so that y, =(B,9(B;)~ B:.¢(B.)/(B;,—B;) and ¢, =
(@(B;) — ¢(B:))/(B,— B;)-Note that ¥(x;) is the convex envelope of ¢(x;)
over [B; , B;], and hence I'(x) is the convex envelope of ¢(x) over R. Now let
R’ = R X R?, and solve the linear program

[(x')+dYy = min. F(x) +dYy.
(x,y)EQ

Clearly if (x*, y*) EQNR’, then ['(x') + d'y’ < ¢* < y¢(x', y'). If it also hap-
pens that ¢(x', y') — ('(x’) + d'y’) < & for some small user specified & =0, then
(x', y') is usually accepted as the global optimum solution. In many of the
recently proposed computational methods (Phillips and Rosen 1988, 1990), the
solution (x’, y') obtained from this linear underestimating problem has, in fact,
turned out to be the global optimum solution to problem (GP). Unfortunately,
the difference ¥(x’, y') — (I'(x’) + d'y")usually exceeds ¢ for many iterations.
These iterations are required only to verify, by improving the lower bound, that
the point (x’, y’) is indeed the global optimum solution. Clearly, it would be
desirable to obtain some sufficient conditions under which the point (x’, y') would
be guaranteed to be the global optimum solution.

Let y(l)(x) be the line passing through [B, , o B; )] and [x}, ¢;(x})], and
let vy, @ (x,) be the llne passing through x5, qo,(x )] and [B, , o B; )] Then the
two linear functions y, )(x ) and v, )(x ) can be expressed as yfl (x; ) =c¢x
and yP(x)=c.x,+v,, where vy, =(ig(B;)~ B ex))/(x;— ﬁ,l) Y, =
(B,o:(x}) — xi@(B)) (B, — x;), and
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1% if x;€{B;,, Biz}
- {(@i(x;) - ¢i(Bi1))/(x; - Bil) if x; € (Bi17 Biz) and

(e itx;€ {8, B,)
€= {(¢i(x;) - ﬁDi(Biz)) I(x;— Biz) ifx;€ (Bi1 > Biz)

Hence, y'"(x,) is a linear underestlmator of ¢;(x;) over [B; , x;] and agrees with
@(x;) at B; and x;. Likewise, yl ®)(x,) is a linear underestimator of ¢.(x,) over [x},
B;,] and agrees w1th @,(x;) at x; and B, . Notice that if either x; = B, or x; = Blz,
then vi(x;) = y,l)(x) yfz)(x) Assume without loss of generahty, that X;E
(B> B,) for i=1,...,n, and that x;€{B, , B} for i=n,+1,...,n For
completeness, also note that ¢ =c,=c fori=1,.... n,

THEOREM 1. Consider the multiple-cost-row linear program with 2™ distinct
cost rows
o

min Zcx+ Z cx+dy, (MCRLP)

&, y)EQl 1 i=ng+1
where j,€{1,2} fori=1,...,n,. Ifx*E€R and if (x', ') solves (MCRLP) for
all 2" distinct cost rows, then (x', y') satisfies y* = y(x’, y'); that is, (x', y') is a
global minimum vertex for problem (GP).
Proof. Since ¢(x,), y(x;), and yP(x,) agree at x; for i=1,...,n, then

W', y) = e(x) +dYy’
—ZC,,X1+ Z cx+d +Zyl]+ Z Yo
i=1 i=ngt+l i=ng+1

for all j,€{1,2},i=1,...,n,. Furthermore, if (x’, y') € is the minimum of
(MCRLP), and since (x*, y*) €Q, we get that

y(x', y)<2cx + Z ¢ x: + d'y* "‘ZYU"‘ E Y,

i=ng+1 i=ng+1

= Z yPaH+ Xy +dy*

i=ng+1

forallj,€{1,2},i=1,...,n, But y¥(x,) < ¢,(x;) over [B;,, x1] and yP(x,) <

@i(x;) over [x;, B, ], and since x} €[B; , B; ] foralli=1,..., n, then there exists
aset {ji,Jjps--+> Jn) (Where j,€{1, 2} for i = 1,. no) such that vy (x*) <
@ (x¥) for i=1,...,n, In addition, it is clear that v(x*) < @(x%) for i=
n,+1,...,n Hence, there is some set {j;, j,,..., jno}, where j, € {1,2} for
i=1,...,n,, such that

E y U9 (x*) + E Y +dyr < Z @ (x*) + dy* = g(x*, y*).

i=ng+1

Thus, ¢(x', y') < ¢* < ¥(x', y') and so * = ¢(x’, y’). U
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Checking the optimality of (x', y') for problem (MCRLP) for all 2™ cost rows
obviously requires an exponential amount of computation. Theorem 2 below
presents an alternate optimality check that can be performed in polynomial time.
It uses the fact that a basis remains optimal when the cost coefficients are
changed, provided the reduced costs remain non-negative. For the purposes of
this theorem, let B be the ordered set of indices of the basic variables at the point
(x',y"), let B, represent the index of the ith basic variable in B, and let
A 5 ER™" be the matrix of columns from A =[A,: A,] which correspond to the

basic variables in B. Also recall that ¢; =c, =c;, fori=n,+1,...,n, and for
notational simplicity and without loss of generality, let ¢, =c¢;, =c, =d, for
i=n+1,...,n+ p (in fact, all other variables x, which are not original problem

variables, e.g., slack and surplus variables if the Simplex Method is used, must
have ¢, = ¢, = ¢, =0 as well). Define w = A-'a" where a'? is the jth column
of A, and for each j€B, let z'” be such that

i

¢, otherwise .

1

) {c' if i=B, and w) >0
z;V =

THEOREM 2. For all j, define the function g\ such that

(’)(z)—z — Z w(’)zB ,

Ifx* &R and gﬁ,’)(z(’)) =0 for all j & B, then (x', y’) is a global minimum vertex
for problem (GP).

Proof. First note that g(z'”) =0 for all J € B. For each j & B, the point z”
solves the linear program

min g5 (2) ,

where C={z:c, <z,<c,,i=1 ..}. Hence, if g(z1?) =0 then
n
z,= w(’)zB 2 (Ag 1a(’))z

i=1

for any set of z;&{c, , ciz} for i=1,2,..., and j& B. Equivalently, for any
j & B, the “reduced cost” r; satisfies

n
=z - > (A;la(j))izBiB 0
i=1

for any set of z,E{c;, c,} for i=1,2,.... Hence, (x', y) is optimal for
problem (MCRLP) for all 2" cost rows, and so by Theorem 1, is also optimal for
problem (GP). O

If the conditions of Theorem 2 are not met, then (x’, y') may not be the global
optimum vertex for problem (GP). In that case, a method for obtaining a better
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solution than (x’, y’) is needed. The method presented here for improving the
solution is based in part on the work from Phillips and Rosen (1988). Specifically,
let N={r:r&B and g®(z"’)<0}. For each iENUB, let the points
(™9, y®Dy and (x*”, y*) denote the solutions to the pair of linear programs

min Z'y](x)+'yfl)(x)+dy and

(x,y)EQNR’
j#t

min Z y,(x;) + v; D(x,)+dy

(x, y)EQﬂR
j#t

respectively. By defining

F(l g _ Z 'y](xl z)) + %(1)(x(1 z)) + dr Qa, 1)

]#1

F(2 Jd) Z %(le)) + y(Z)(x(Zt))+ dt 2, :)

}#t
(Il(l’i)_ ( (1, l))+dt (1, l) and
lll(z’i)_' ( 2, t))+dt (2;)
then we get

THEOREM 3. Let
— : (L) (2,9 = ; (L) (2,8)
I'= ,max {min{I"*"" T**"}} and ¢ ,Iin_ {¢*", ¢ Y.
If x* ER then
T(x')+d'y <T < y*<min{y, p(x', y')} .

Proof. The upper bound on ¢* is obvious since for all i€E NU B, both
x4 yENYeQ and (%P, y*P)eQ. Thus, ¢*<e(x?, y* and y*<
P(x®?, y@D) for all i€ NU B.

To obtain the lower bounds on ¢*, let R™") = {(x ER":x €R and B, <x;<xi}
and R ={xER":xER and x| <y, <B}fort—— , . Since x* € R, then
for any i € NU B, either x* € R(l) or x*€ R(z)

Case (1). If x*€ RV then

I= min Z yx)+ yP(x) + dy=< 2 y(x) + yP ) + dYy

(x, y)EQﬂR
j#i j#t

<D g(x%) +dy*=y*.
i=1

This last inequality holds since 7v,(x;) <g,(x;) for all x;€[B;, B;] and j=
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L,...,n, and y(x,) < ¢(x,) for all x; €[B;, x{] and x7 €[B,, xi]. Hence,
I‘(l’l) < 4]*
Case (2). If x* ZR™, then if x* € R (since x* € R) so that

r®?=min E yi(x5) + yP(x,) + dy < 2 y(x¥) + yP (xt) + dy*
(x, y)EﬂﬁR J j=1
j#i J#i

sz (%) + dly* =y
P

Again, this last inequality holds since ¥,(x;) < ¢,(x;) for all x,€[B; ,8,] and
ji=1,...,n,and yP(x,) < ¢(x,) for all x, €[}, B B;,] and x} E[xl, 2] Hence

re? < c,l;*. Thus, for any i € NU B, min{l'""?, 'Y} < ¢*, so that
= TED P@OVY < g*
r max_ {min{T"", T*"}} < ¢

To show that ['(x')+ d'y’ <T, note that both (x,)<y"(x,) and y(x;) <
y3 (x,) for all x, € [B; ., B;,] and i€ NU B. Hence, for any iENU B,

I'(x)+dy'= min T'(x)+dy= min Z'y](x)+dy

(x.y)EQR’ (x,¥)EQNR

< min Z'y](x)+‘yfl)(x)+dy reo,

(x, y)EQﬂR
j#z

Likewise, for any i € NU B, T'(x') + d'y’ <T®", Hence,
’ £ - - (1,i) (2,i)
F'(x')+dy siénz\}LrJlB{mm{F T2 <T. O

As before, if ¢y —I'<< ¢ then the point (u, v) = argmin(y) can be accepted as the
global minimum vertex. If ¢ — I’ still exceeds ¢, then even though (u, v) may not
be the global minimum vertex, it may be possible that the solutions provided by
the 2| N U B linear programs can be used to eliminate portions of ) that cannot
contain (x*, y*).

More precisely, let i€ NU B, If T = ¢ then it can be shown (Phillips
and Rosen 1988) that x* Z R and hence R can be discarded from considera-
tion. Likewise, if I®? = ¢®9 then x* 2 R® and hence REZ) can be discarded
from consideration. Clearly, if both I = ¢*? and I'>" = *? then equality
holds, and the point (u,v) is, in fact, the global minimum point. If some
subregion is eliminated, then the hyperrectangle R can be reduced in size, and the
linear underestimating program described in Theorem 1 can be repeated on this
smaller region. If no subregions can be eliminated, then, as shown in Phillips and
Rosen (1990), a bisection of the region R into two smaller subregions may be
applied so that the initial linear underestimating program can be repeated on both
of these smaller regions concurrently.



86 A. T. PHILLIPS AND J. B. ROSEN

In fact, in order to prove convergence of the algorithm to an e-approximate
solution, it is necessary to require that a sufficiently large fraction of the current
hyperrectangle be eliminated at every step. By defining the “length” of a side
[B,,, B.,] of R to be the product A,(B,, - le)z where A, is some positive constant,
then if the length of the longest side of R prior to the subregion elimination step is
greater than some fraction 8 of its current (i.e., after elimination) length (where
0< 6 <1 is user specified), then not enough of R was eliminated (e.g., no
subregions were eliminated and so R has not changed). Hence, eliminate what-
ever subregions can be eliminated (if any), and bisect the new region along that
“longest” edge. More precisely, if a bisection of R is to be performed, then let A,
A,, ..., A, be positive constants (whose choice is specified below) and select the
bisected edge/direction s such that

A(B, = B,) = max A(B,~B,)"

i=1,...,

and then set By:= (B, + B,))/2, R;:={x:xERand x, < B,}, and R, :={x:x €
R and x, = B,}. If the second derivative of each ¢,(x;) exists and is continuous on
[0, B;]fori=1,..., n, then the positive constants A, € R can be chosen such that
|o%(x)| <A, for all x, €[0, B;], i=1, ..., n Regardless of the choice of the A,,
the initial linear underestimating program can be repeated on both of these
smaller regions in parallel, and finite convergence can be guaranteed.

3. Algorithm

Based on the previous discussion and theorems, we can present a computational
algorithm for obtaining a solution to problem (GP). In the following algorithm,
(u, v) represents the vertex corresponding to the “best” function value ¢ (the
upper bound) at any point in the method, and both of these are globally
accessible values. All other values are considered to be local to the enclosing
procedure.

The method consists of three main parts: procedures ComputeRectangle,
SolveProblemOverRectangle, and Solve2nLinearPrograms. The main program
itself is called FastSolution. Step 5 of SolveProblemOverRectangle is the test of the
sufficient condition since if g,(r)(z™)=min{g,’(z"”): j& B} =0, then by
Theorem 2, the point (x’, y') solves problem (GP) and so ¢ = y(u,v)=
Y(x’, y"). Steps 10 through 15 of procedure SolveProblemOverRectangle, and in
particular the call to procedure Solve2nLinearPrograms in Step 11, are heuristic
steps designed to accelerate convergence of the algorithm by attempting to
improve the incumbent vertex (x’, y') and lower bound I, and by attempting to
eliminate subregions of the hyperrectangle R which cannot contain the global
optimum vertex. The constant p in step 15, which is required for convergence,
may be set to any arbitrary positive integer. For more details concerning these
steps, see Phillips and Rosen (1988). If ¢ >0 is the desired stopping tolerance,
then the algorithm can be stated as follows:
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FastSolution:

1. ComputeRectangle(R)

2. SolveProblemOverRectangle(R I').

3. The global solution is i with corresponding vertex (u,v) and lower bound T.
End FastSolution.

Procedure ComputeRectangle(R):
1. Compute the enclosing hyperrectangle R by solving the multiple-cost-row
linear program
By= (xnylireln i
for each i=1,...,n to get the vertices (x, y(l)), (x®, y(z)), ce,
(x™, y™) and corresponding optimal function values BBy Also
solve the multiple-cost-row linear program
Fi= max, %

for each i=1,...,n to get the vertices (x"*P, y*"*V),

D),y 2y, o0, (@), y®) and  corresponding optimal function

values B, ,..., B,
2. Set Ri={x: B, <x;<B,,i=1,...,n},

yi= min {$(x?, yO)}

.....

and (u, v) 1= argmin(y).
3. Return R.
End ComputeRectangle.

SolveProblemOverRectangle(R, I'):

1. Given the hyperrectangle R={x:B; <x,<p,, i=1,...,n}, construct
the linear function I'(x) which agrees with ¢(x) at all vertices of R. That is,
let

T(x)= 2 ()
where, for i=1,...,n, %(x;) = c;x; + v, and

1
Cio = Biz — Bi (gDi(Bi) - (Pi(Bil))a and

’Yioz B,2 Bll (Btz<Pl(Bll) le(Pt(Bzz))

2. Let R’ = R X R? and solve the linear program
min F(x) +d'y

(x,y)ean
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to get the candidate point (x’, y'). Set I :=T(x") + d'y’, ¢':= ¥(x', y’),
Yi=min{y, ¢'}, and (u, v) := argmin(yy). Set I:=1.
If (y —T")/|y|=< e then set T':=T" and go to step (20).

. Fori=1,...,n, define

_{c if x € (B, B,)
“ (e(x}) - ¢i(3i1)) /(xy = Bil) if x; € (Bil ’ 3;'2) and
¢ = Ciy i_f x € {Bila 3;‘2}
B | (p(x}) — ¢i(3i2)) /(xg = Biz) ifx € (BiI: 31'2) .
Also define ¢; =¢; =c;, =d;fori=n+1,...,n+p,and¢, =c, =¢, =0
for all other non-original problem variables.

. Let B be the ordered set of indices of the basic variables at the candidate

point (x’, y'), let B, represent the index of the ith basic variable in B, and
let A, €R™™™ be the matrix of columns from A =[A,: A,] which corre-
spond to the basic variables in B. Define w'” = A;'a"”, where a'” is the
jth column of A. For each j & B, define z such that

oy |e, ifi=B,and w(’ >0
z,7 =

31
¢; otherwise.

7}

In addition, for each j & B, define the function g$’ such that
8P =2,- 3 Wz,
and let 7 & B be such that
85(z) = min (g0 ")}
J&B

If g9(z™) =0 then set T':=T" and go to step (20).

. Let N={r:r&B and g9 (z"”)<0}. Solve the multiple-cost-row linear

program

min z(")r<x)

(x,y)EQ y
for each jE N, to get the candidate points &9,y Let y(x®, y®) =
min{y(x'”, y):jE N}. Set ¢ :=min{y, p(x®, y*N, and (u,v) =
argmin(y).

. If (§ —T")/|¢|=<e then set [':=T" and go to step (20).
CIf g(x®, y®) <y, then set ¢ := p(x®, y®) and (x', y'):= (x®, y*)

and go to step (4).

. Lets€{1,...,n} be such that

/\s(ﬁsz - le)z = nl'l"‘n‘{n’\i(ﬁi2 - Bil)2 .

Set OldVolumeOfR := volume(R), and OldLengthOfSidesS := A,(B,,—
B.)"
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11. Solve2nLinearPrograms(R,I",¢").

12. If (¢ —T")/|d| < e then set [':=T" and go to step (20).

13. If ¢' < y(x’, y') then set (x', y’):=argmin(¢’') and go to step (4).

14. If A(B,,— le)z < OldLengthOfSideS then set 1:=1 and go to step (4).

15. If volume(R) < OldVolumeOfR and I < p then set I := 7 + 1 and go to step
4).

16. Set By:=(B,,+ B,)/2, Ri:={x:xER and x,<B;}, and R,:= {x:xER
and x, = B,}.

17. SolveProblemOverRectangle(R,, T')).

18. SolveproblemOverRectangle(R,,T’,).

19. Set I':= max{I", min{T";, I, }}.

20. Return I'.

End SolveProblemOverRectangle.

Procedure Solve2nLinearPrograms(R,I",¢’):

1. Given the hyperrectangle R={x:p,<x,<B,, 1, ,n}, for each
i=1,. , let B —(B,]—i- B.)/2, and construct v; 1)(x) v; 2)(x) and
'yi(x,-) such that 'yfl)(x,) =Xt Y, yP(x,) = c.x;+v,, and y(x,)=
¢, X; T v, where

cil B B (¢1(Bz3) q’t(le))

¢, = Biz _ Bi3 (¢i(Bi2) - 4’;‘(3,-3)) >

= g g #(B)~ (B, . and

z

Y, = B - B, (Bi3¢i(Bi1) - Bi1¢i(Bi3)) ’
3 “
1
Y, = B, — B (Biz(pi(Bi3) - Bé3¢i( Biz)) ’
{2 i3
yl.oz B B !2 (Bll) BZI¢I(B},2))
2. Let R"=RXR” For each i=1,...,n, solve the pair of linear programs

min Z y,(x;) + v: WD(x,)+dy and

(x, y)eﬂnR
j#t

min 2%(X)+Yf Y(x,) +dy

(x, y)eﬂﬁR
j#i

(L)

to get the candidate points (x y&9y and (x*7, y*9), respectively.
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3. Denote

F(l ) E y(x(l t)) + yfl)(x(l l)) + dt (1, z)

]#1

1@ - i yEEDY+ y @0 + dy@D
j=1
VEall
Py = p(xBN) + @y | and
l//(2 4) ¢(x(2 l)) + dt 2, 1)
Set
¢’ :=min{y’, __mm (g y@)  and

.....

Set ¢ :=min{¢//, o’ } and (u, v) 1= argmin(y).
4. For each i=1,...,n, if T"?=y"" then set B, :=B,. Likewise, if
| NSETAC) then set B, := B;,.
5. Set R:={x:8 B <x; \B,z, i=1,...,n}.
6. Return R, I'’, and .
End Solve2nLinearPrograms.

4. Error Bounds

To analyze the convergence of the algorithm, denote the hyperrectangle at
iteration k by R® = {x: Bgll‘) <x, sﬁg‘), i=1,...,n}. Referring to steps (11)
through (14) of the algorithm, at the end of iteration k the edge s of “longest
length”  satisfies A (B("”) (1“)) < max{A, (B(k) (k)) /4, A (B(k)
B(")) }. Furthermore, by denotlng the linear underestlmauon error at iteration k
by e(k)(x Y=o,(x,)— y¥(x,) fori=1,...,n, where y*(x,) is the linear under-
estimator described in step (2) of the algorithm, then it can be easily shown that
for all x; E[B("), (k)]

(k)(x )< A (B(k) (k))

Since the sth term of the error ¢®’(x,) is the largest of the error terms at
iteration k, and this term is factored by at least max{1/4, 6} at iteration k, then at
some iteration j all such “lengths” )\i(Bg ) gY )) i=1, , n, will satisfy

(k)(x)<—/\(B(’) (’)) <e/n fori=1,...,n.
Hence, at some finite iteration j, the error between ¢,(x,) and y”(x,) over R*” is

bounded above by e/n foralli=1,..., n, and thus the error between  and I' is
bounded above by £ and an e-approximate solution has been identified.
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5. Example

As an example, consider the concave quadratic function ¢(x, y)= ¢(x)+
d'y = —1/2(2x> + 8x3). Note that there are no purely linear variables y in this
example so that ¥(x)=¢(x, y)=e(x) and x ER’. Also define the polytope
Q={x;,x)x, +x,<10, x; +5x,<22, —3x; +2x,<2, —x, —4x,<—4, x, —
2x,=<4}. The vertices of Q are (0,1), (4,0), (8,2), (7,3), and (2,4) with
corresponding function values ¥(x) = —4, —16, —80, —85, and 68. Thus, * =
¥(7,3) = —85. The feasible region () is shown in Figure 1.

Let £ =0 and consider the solution procedure used by the algorithm. The initial
hyperrectangle R={x:0=<x, <8, 0=<x,=<4} and the initial global incumbent
function value = —80 at the vertex u = (8, 2). The initial linear underestimator
of y(x) over R is I'(x) = —8x, — 16x, which attains its minimum over  at
x'=(7,3) with T'(7,3) = —104 and (7,3)=—85. Hence, x'=u=(7,3), ' =
=104, and ¢’ = ¢ = -85 (i.e., the global incumbent has been updated). Since the
current incumbent vertex x' = (7, 3) is strictly interior to R, then n,=2 and the
four linear functions described prior to Theorem 1 are given by yﬁl)(xl) =—Tx;,
yPx,)=—-15x, - 36, y{(x,)=—12x,, and y{P(x,)=—28x, —64. The or-
dered set of basic variables at the vertex (7,3) is B = {x,, x4, x5, X,, x;} and so
only z and z® need to be computed (since m + n = 7). Constructing z” as
described prior to Theorem 2, 2z =(-15,-28,0,0,0,0, 0) and 2=
(=7, -28,0,0,0,0,0). Hence, g(z)=0 and g%’(z*’) =1.75 and the suffi-
cient conditions are satisfied.

Since the sufficient conditions have been satisfied at the vertex (7, 3), the global
incumbent function value ¢ = —85 with corresponding vertex (7, 3) is the global
minimum; that is, * = —85 and x* = (7, 3). Note that the lower bound is still
only I'" = —104.

Xy

I | |
1 2 3 4 5 6 7

Fig. 1. The feasible region.

o0 ——



92 A. T. PHILLIPS AND J. B. ROSEN

6. Computational Results

The computational results in this section were obtained on a Macintosh IIsi (20
MH?z) and, in all of the tests cited, a stopping tolerance of £ = (.001 was used. In
addition, step (6) of the algorithm states that for N = {r:r & B and g’ (z") < 0}
one should solve the multiple-cost-row linear program
min_zY )'(x)
(x.7)€Q y
for each jE N, to get the candidate points (x*”, y). Then let y(x®, y®)=
min{y(x'”?, y):jEN}, and set ¢:=min{y, y(x*, y®)}, and (u, v) =
argmin(y). After considerable computational testing it has been determined that
if the candidate solution (u, v) is updated by at least one of these linear programs,
it is also usually updated by the one having the most negative value of the
function g,(z). Hence, step (6) of the computational implementation solves only
the single linear program
min_zY ):(x)
(x,y)EQ y
where g’ (z?)=min{g{(z"):reN}.
The class of problems tested were randomly generated concave quadratic
functions of the following form:

o(x) = ;1 Ai(x; — Vi)2 .

where v is the unconstrained global maximum of ¢(x), and A, <0 fori=1,..., n.
It has been observed (Phillips, Rosen, and van Vliet 1991) that for problems with
the global maximum v € (), there exist significantly more local minima than for
problems of the same dimension with no restriction, on », hence these problems
should be more difficult to solve. For this reason, all problems were generated in
such a way that » € (). Finally, five problems of each size with values of m =10,
n € {10, 25, 50}, and p € {0, 25, 50} were tested.

A summary of the results is presented in Table I. All times reported (min, avg,
and max) are CPU seconds required to solve the problem with the sufficient
conditions test included. The column labeled “% Sufficient Conditions Satisfied”
lists the percentage of problems solved for which the sufficient conditions were
satisfied for at least one subproblem. The columns labeled “Time Ratio” list the
ratio T, /T, where T,_is the CPU time required to solve the problem using the
sufficient conditions test, and 7 is the CPU time required to solve the problem
without the sufficient conditions test. It is clear that the additional computation
necessary to test the sufficient conditions means that the ratio T,./T <1 only if
the total number of iterations required is reduced enough to more than com-
pensate for the extra computation.

Based on a simple geometric viewpoint, it would seem clear that if the linear
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Table I. Concave quadratic test problems

m n P CPU time (secs) % Sufficient Time ratio
- conditions

min avg max satisfied min avg max
10 10 0 352 8.91 18.00 100 0.69 1.08 1.36
10 10 25 7.00 11.81 17.98 40 1.11 1.17 1.26
10 10 50 7.57 17.52 28.06 60 0.94 1.10 1.21
10 25 0 15.33 40.10 93.60 100 0.96. 1.04 1.18
10 25 25 12.25 36.06 63.10 40 0.94 1.16 1.49
10 25 50 43.45 80.14 134.40 40 1.14 1.32 1.45
10 50 0 26.55 57.85 128.73 60 0.93 1.06 1.18
10 50 25 32.88 73.27 105.50 20 1.04 1.10 1.22
10 50 50 39.45 207.89 365.07 20 1.00 1.25 1.48

Table II. Concave quadratic test problems with m =10, n =150, and p =25

CPU Time (secs)

T (6 = 0.005) T@®=1)
29.42 69.23
29.60 32.88
31.93 105.50
32.87 58.40
32.58 100.33

term d'y dominates the nonlinear function ¢(x) over (), then the problem is more
linear in form and both the sufficient conditions and the e-tolerance test should be
satisfied more quickly. To verify this prediction, the set of concave quadratic test
problems with m =10, n=50, and p =25 were tested again but with the
nonlinear term ¢(x) dampened by a factor 6. That is, the function minimized was
0 (x) + d'y, where § = 0.005 was chosen. In addition, the e-tolerance test in step
3 was removed so that termination could only occur if the sufficient conditions
were satisfied in step 5 or if the e-test was satisfied in steps 7 or 12. The results
comparing the cases 8 = 0.005 and 6 =1 (the original dampening factor) are given
in Table II. In four of the five cases with 8 = 0.005, the sufficient conditions were
satisfied immediately following the initial linear underestimator; hence, a total of
101 linear programs were solved. The fifth case required one improvement in the
incumbent vertex (over the vertex found by the initial linear underestimator) and
thus a total of 203 linear programs. The e-tolerance was satisfied for this problem
in step 12 after the 2n subregion linear programs were solved. On the other hand,
for 6 = 1 four of the five problems tested required at least one domain split, and
the sufficient conditions were satisfied in only one case.
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