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Abstract. A concave function defined on a polytope may have many local minima (in fact every 
extreme point may be a local minimum). Sufficient conditions are given such that if they are satisfied 
at a point, this point is known to be a global minimum. It is only required to solve a single linear 
program to test whether the sufficient conditions are satisfied. This test has been incorporated into an 
earlier algorithm to give improved performance. Computational results presented show that these 
sufficient conditions are satisfied for certain types of problems and may substantially reduce the effort 
needed to find and recognize a global minimum. 
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1. Introduct ion 

This paper considers the problem of finding sufficient conditions for obtaining a 
solution to a linearly constrained concave global minimization problem of the 
form 

global min ~,(x, y) = ,p(x) + dry, (GP) 
(x,y)Ea 

where the nonlinear term q~(x) can be expressed in separable form. That is, 

i=1 

and each ~i(xi) is concave. Additionally, 12= {(x, y ) : A 1 x +  A2y<~b, x>~O, 
y ~> 0} is assumed to be nonempty and bounded, and x E R n, y E R p, A 1 E R re• 
A 2 E R '~• b E R", and d E R p. 

Problem (GP) is a constrained combinatorial optimization problem for which 
many well known problems are special cases. For example, the concave quadratic 
global minimization problem is a special case of problem (GP) for which 
~0(x) = (1/2)x'Qx + c~x where Q E R "• is symmetric and negative definite (~(x) 
can be transformed into separable forms using the eigenstructure of Q). This 
concave quadratic global minimization problem is known to be NP-hard (Phillips 
1988), and hence it follows that problem (GP) is NP-hard. From a computational 
viewpoint, this means that, in the worst case, the computing time required to 
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obtain a solution will grow exponentially with the number of nonlinear variables. 
An important property of problem (GP), which is basic to many solution methods 
(Phillips 1988), is that the global minimum point is always found at a vertex of the 
convex polytope ~. For this reason, linear programming is an essential part of any 
computational algorithm to solve problem (GP). 

Additionally, many practical problems in engineering design can be formulated 
as problem (GP). For example, a class of synomial optimization problems, for 
which the theory of geometric programming was originally developed (Duffin, 
Peterson, and Zener 1967), can be transformed into problems of the form (GP). 
Such problems occur in engineering design, where the function to be minimized 
can often be expressed as the sun of component costs of the form 

all ai2 ai m 
l~ i -~- C i t  1 t 2  �9 . . t m , 

where the constants aq are specified (possibly negative) real constants, and the 
design parameters t i are assumed to be positive variables. If the constants ci ~< 0 
for all i, then this function in turn can easily be converted, using standard 
techniques (Phillips and Rosen 1990), to a concave function in the form required 
by problem (GP). 

In this paper sufficient conditions for recognizing a solution to the global 
minimization problem (GP) are presented and justified. It is shown that the use 
of these sufficient conditions to recognize a global minimum can significantly 
accelerate the solution for certain types of problems of the form (GP). This is 
supported by computational results for problems where the linear terms tend to 
dominate the nonlinear terms in the objective function. Thus it is shown that 
these sufficient conditions are satisfied for certain types of problems, and that they 
can be used to substantially improve the performance of an earlier algorithm. 
Hence, a new algorithm is presented which incorporates a termination test based 
on satisfaction of the sufficient conditions. 

The sufficient conditions can be best understood in terms of solving a multiple 
cost row linear program with 0(2 n) cost rows. However, it will be shown that it is 
only necessary to solve a single linear program to determine if the sufficient 
conditions are satisfied. If they are not satisfied, this information can frequently 
be used to obtain improved bounds and possibly eliminate part of the feasible set 
from further consideration. 

In the next section, the sufficient conditions are presented and justified. In 
Section 3, a detailed description of the new algorithm is presented. In Section 4, 
error bounds are used to show that an e-approximate solution is obtained after a 
finite number of steps. A simple numerical example is given in Section 5. Finally, 
in Section 6 the computational results are presented. These results are summar- 
ized in two tables. In Table I results are given for the most difficult type of 
concave quadratic problem; that is, where the quadratic term dominates and has 
its maximum at an interior feasible point. It is seen that the new algorithm only 
gives a faster solution in a few cases. It gives much faster solution times when the 
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linear term dominates, as shown in Table II. Comparisons were made for five 
problems and the new algorithm was faster in all cases. In two of the give 
problems the time was reduced by a factor of three. 

2. Sufficient Conditions 

Let (x*, y*) E ~ be a global optimum solution, with corresponding function value 
~* = O(x*,  y* ) ,  to the problem (GP). Let R C R n be a hyperrectangle defined by 

R=(x : f i i~  ~<xg~</312, i = l , . . . , n } ,  

where the lower and upper bounds/3il and/3g 2 are given (see Section 3 for details 
on how to easily obtain these bounds). Also, define the linear underestimator of 
q(x) over R to be 

r (x )  = 
g=l 

where each 7i(xg) is a linear function such that 7i(xg) ~< q~i(xg) for all xg E [/3q, fli2], 
Yi(/3i) = ~~ and Yi(fli2) = ~Og(fig). Hence, F(x) is a linear underestimator of 
q~(x) over R which agrees with q~(x) at all vertices of R. Denote yg(xi) = cgx  i + 3% 
for i = l , . . . , n ,  so that ygo=(fli2q~g(flq)-f l i ,~og(flg2))/(f l i2-flgl)  and ci0= 
(~oi(r - ~ i ( f l i l ) ) / ( f l g 2 - f i i ) . N o t e  that yg(Xi) is the convex envelope of q~i(xi) 
over [/3q,/392], and hence F(x) is the convex envelope of q~(x) over R. Now let 
R'  = R x R p, and solve the linear program 

r ( x ' )  + dty ' =  min r (x)  + d ' y .  
(x,y)E f~f3R' 

Clearly if (x*, y*) E l~ n R', then F(x') + dry ' ~< ~* <~ ~b(x', y ') .  If it also hap- 
pens that ~b(x', y ' ) -  (F (x ' )+  dry ') ~< e for some small user specified e >10, then 
(x', y ' )  is usually accepted as the global optimum solution. In many of the 
recently proposed computational methods (Phillips and Rosen 1988, 1990), the 
solution (x', y ' )  obtained from this linear underestimating problem has, in fact, 
turned out to be the global optimum solution to problem (GP). Unfortunately, 
the difference ~b(x', y ' ) -  (F (x ' )+  dy')usually exceeds e for many iterations. 
These iterations are required only to verify, by improving the lower bound, that 
the point (x', y ' )  is indeed the global optimum solution. Clearly, it would be 
desirable to obtain some sufficient conditions under which the point (x', y ' )  would 
be guaranteed to be the global optimum solution. 

Let ~/}I)(X/) be the line passing through [/3g 1, ~Dg(~il)] and [xti, ~0i(x~)], and 
let yl2)(xi) be the line passing through x;,  ~i(x~)] and [fli , ~i(f l i  )]. Then the 
two linear functions yll)(xi) and y}E)(x/) can be expressed as y}l)(x~)= CglX i + Tq 
and y}2)(xi) = c i x  i + yg2, where Yq = (x;~g(fli~) - f l i~g(x ; ) ) / (x ;  - f ig),  7/2 = 

( fli2~g(x ;) - x'i~i(fig2)) / ( fig2 - x ; ) ,  and 
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Ci o 
Cil = ( ~i(Xti) -- ~Di( [~il)) / (X'i - J~il ) 

Ci o 
Ci2 = (qOi(X;) -- ~ i ( [~ i2) ) / (X; -  ]~i2 ) 

if x; ~ {/3i,, ]3i2 } 
if x'~ E (]~i1' J~i2 ) 

i f x ; E  {/3,/3~2 } 
if x; E (/3~,/3~2 ) 

and 

Hence ,  y}~)(xi) is a l inear underes t imator  of q~i(xi) over [/3i~ , x~] and agrees with 
~i(xi) at 13il and x~. Likewise, y~2)(xl) is a linear underes t imator  of ~i(xi) over [xl ,  
/3i2 ] and agrees with q~i(xi) at x~ and/3i2. Notice that  if ei ther x~ =/3q or x; =/312, 
then  y~(x~)~ y}a)(xi)=-y}2)(xi). Assume,  without  loss of generality,  that  x~ E 
(/3q,/3~) for i = l , . . . , n  o and that  x~{ /3q , /3~2  } for i = n  o + l , . . . , n .  For  
completeness,  also note that  cq >i cio>~ c~2 for i = 1, . . . .  , n o. 

T H E O R E M  1. Consider the multiple-cost-row linear program with 2 n~ distinct 
cost  rows  

n~ CiliXi min ~ + CioX i + d'y , ( M C R L P )  
(x,y)~g i=1"= i=no+l 

where Ji ~ {1, 2} for i = 1 , . . .  , n o. I f  x* E R and if (x', y ')  solves (MCRLP)  for 
all 2 n~ distinct cost rows, then (x', y ' )  satisfies q,* = q,(x', y ' ) ;  that is, (x', y ')  is a 
global minimum vertex for problem (GP). 

Proof. Since ~oi(xi), y}l)(xi), and y}2)(xi) agree at x; for i = 1 , . . . ,  n, then 

qJ(x', y ' )  = q~(x') + dry ' 

no oo 

= 2 CijiX; "~ CioX; q- dry ' q- Z ~liji ~- ~/i 0 
i=1 i=n0+l i=1 i=n0+l 

for all Ji ~ {1, 2}, i = 1 , . . . ,  n o. Fur thermore ,  if (x', y ' )  E 12 is the min imum of 
( M C R L P ) ,  and since (x*, y * ) E  f~, we get that  

no no 

qJ(x', y')<~ E cqix* + ~ CioX:~- dty* + Z ~liji + ~ "Yio 
i=1 i=n0+l i=1 i=n0+l  

.o  

Z .(Ji)t'..*'~ = r ,  + + d ' y *  
i=1 i=n0+l 

for a l l j i  E {1, 2}, i = 1 . . . . .  no. But  y}l)(xl) ~< q~i(xi) over [/3il, xl] and y}Z)(xi) <- 
' * ~ [/3q /3i2 ] for all i = 1, . n, then there exists q~(xi) over [xi,/312], and since x i . . . .  

a set ( J l ,  J2 . . . .  ' J-0} (where Ji E {1, 2} for i = 1 , . . .  , no) such that  y}J~)(x*) <~ 
q~i(x*) for i =  1 , . . . ,  no. In addition, it is clear that  yi(x*)<~ ~i(x*) for i =  
n o + 1 , . . . ,  n. Hence,  there is some set {J l ,  J2, �9 �9 �9 J-o}' where Ji ~ (1, 2} for 
i = l , . . . , n o ,  such that  

Z -  (Ji)[-.*~ ri  t~i)  + Yi(x*i) + dry * -< ~~ + d~Y * = q,(x*, y*) .  
i--1 i=no+l  i= l  

Thus,  qJ(x', y ' )  ~< ~0" ~< q,(x', y ' )  and so ~b* = q,(x', y ' ) .  [] 
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Checking the optimality of (x', y ' )  for problem (MCRLP)  for all 2 "o cost rows 
obviously requires an exponential amount  of computation. Theorem 2 below 
presents an alternate optimality check that can be performed in polynomial time. 
It uses the fact that a basis remains optimal when the cost coefficients are 
changed, provided the reduced costs remain non-negative. For the purposes of 
this theorem,  let B be the ordered set of indices of the basic variables at the point 
(x', y ' ) ,  let B i represent the index of the ith basic variable in B, and let 
A B E R m x m  be the matrix of columns from A = [A 1 : A 2 ]  which correspond to the 

basic variables in B. Also recall that cq = ci2 = cio for i = n o + 1 , . . . ,  n, and for 
notational simplicity and without loss of generality, let cq = ci2 = qo = di for 
i = n + 1 , . . . ,  n + p (in fact, all other variables x~ which are not original problem 
variables, e.g., slack and surplus variables if the Simplex Method is used, must 
have cq = ci2 = Cio = 0 as well). Define w (j) = A~aa (i) where a (D is the j th  column 
of  A, and for each j ~ B ,  let z (j) be such that 

z(/) = I ci~ if i = B k and w~ j) > 0 
i (ci2 otherwise.  

T H E O R E M  2. For all j, define the function g(B j) such that 

gT)(z) = z j -  ~ w(J)z 
i B i ' 

i=1 

I f  x* @ R and g~J)(z (j)) >I 0 for all j ~ B ,  then (x', y ')  is a global minimum vertex 
for problem (GP). 

Proof. First note that g~J)(z ~ =- 0 for all J ~ B. For  each j ~ B ,  the point z (j~ 
solves the linear program 

min g~J)(z) 
z ~ C  

where C = {z : ci2 ~< zi ~< c~1, i = 1, 2 . . . .  }. Hence,  if g(BJ)(z 0)) >! 0 then 

z , ~ > ~  ~j)_ _ ~  -1 ~j) W i Z B i - -  (A B a )iZBi 
i=1  i=1 

for any set of z i E {q , ,  c;z } for i = 1, 2 , . . . ,  and j ~ B .  Equivalently, for any 
j JE'B, the " reduced cost" r i satisfies 

rj ~ Z i ~ tA-~a (j)'~ - >~ 0 - -  ',, B ] i s  Bi  
i=1  

for any set of z~ E {ci,, ci2 } for i = 1, 2 . . . . .  Hence,  (x', y ' )  is optimal for 

problem (MCRLP)  for all 2 "0 cost rows, and so by Theorem 1, is also optimal for 
problem (GP).  [] 

If the conditions of Theorem 2 are not met,  then (x', y ' )  may not be the global 
opt imum vertex for problem (GP).  In that case, a method for obtaining a bet ter  
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solution than (x', y') is needed. The method presented here for improving the 
solution is based in part on the work from Phillips and Rosen (1988). Specifically, 
let N = ( r : r J ~ B  and g~O(z(r))<0}. For each i E N U B ,  let the points 
(x(~,i), y(1,O) and (x (2'0, y(2,i)) denote the solutions to the pair of linear programs 

n 

min ~ ]ti(X]) + T}I)(xi) + dry and 
(x,y)El~f'lR' 1= 1 

min 2 yj(x i) + y~2)(xi) + d~Y 
(x,y)El~f'lR' ]=1 

]~i 

respectively. By defining 

z 1 i)x . (1)/..(1,i)-~ r (1'i) =- yji, xj" ) -t- y i  i,-~i ) -F dty (1'i) , 
j=1 

." 2,i)x . (2)t'~(2,i)x r(2 ' i )  = "Yil, x i  ) + yi ka, i 1 + dry (2'i) , 
1=1 
j#i 

0 (~'~ = ~o(x (~'~ + d'y (~'~ and 

i1/(2'i) = ~ (X  (2'i)) -~- dty(2,i), 

then we get 

T H E O R E M  3. Let 

min ($0,i), 0(2,0}. r = ieNuBmax {min{r (1'i), r(2,1)}} and O = ieNu8 

I f  x* E R then 

F(x ' )  + d 'y '  ~<F~ < $* ~< min{~b, 4,(x', y ' ) } .  

Proof. The upper bound on ~* is obvious since for all i E N U  B, both 
(xO,i) ,  y(1,i)) E ~ and (x (2'i), y(2,i)) ~ ~ .  Thus, 0* ~< @(X(l'i), y(1,i) and ~b* ~< 

0(x(2,0, y(2,i)) for all i E N U B. 

To obtain the lower bounds on 0" ,  let R} 1) = {x E R" : x ~ R and/3q ~< x i <~ x;} 
and R} 2) = {x E R" : x E R and x~ <~ x i ~</3 i } for i = 1 . . . . .  n. Since x* E R, then 

(1) ~_ ~, ~ o(2) for a n y i ~ N U B ,  e i t h e r x * E R i  ~ , ls  ~ , , i  �9 
Case (1). If x* ~ R} 1) then 

__- _ u)~..,~ dry* F u '~  m i n  2 "~,(X]) + ' y}e)(x i )  "Jr dry ~ s ~lj(X;) -t- "Yi ~,'~'i) "Jr 
(x,y)Enna' ]=1 j=1 

jei ]#i 

 j(x 7) + d'y* = 4,*. 
]=1 

This last inequality holds since yj(xj)~< q~j(Xl) for all x i E [/3h, /3j2 ] and ] = 
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1 , . . . ,  n, and yll)(xi) ~ qi(xi) for all xi E [flq, x'i] and x* E [fl/1 , x t i ] .  Hence,  
F (1,i) ~ ~ * .  

Case (2). If x*r , then if x* ~ RI 2) (since x* E R) so that 

_ ~ '  ( ~ _ (2)r. . ,~ d y *  F (2'~ min z.,3,~(xj)+V,2)(xi)+dty<~z_,'),i(x~.)+7, t ~ , ) +  
( x , y ) ~ n R '  j= l  ]=1 

j# i  j~,i 

j= l  

Again, this last inequality holds since yi(xj) <~ q~j(xj) for all xj E [/3j~,/3j2 ] and 
. ,  ~ , X r = * E [ i,/3i2]" Hence,  j 1 , . .  n, and y}2)(xi) -< q~i(xi) for all x i E [x' i ~i2] and x i 

F ~2'~ ~< ~0". Thus, for any i ~ N U B, min{F u'~ F (2'i)) ~< ~0", so that 

F--- max (min{F u'i), r (2 ' i )}} ~< ~b*. 
iENUB 

To show that F ( x ' ) +  d y '  ~<F, note that both y~(x~)~y}l)(x~) and y~(x~)<~ 
yl2)(x~) for all xi E [/3q,/3~2 ] and i E N U B. Hence,  for any i E N U B, 

F(x') + dry '= min F(x) + d~y = min s yi(xj) + d~y 
(x,y)EI'tR' (x,y)E~DR" i=1 

~< min 2 yj(xj) "-[- V~I)(xi) -~- d~y = F (1'i) �9 
(x,y) El'~flR' 1"=1 

.i#i 

Likewise, for any i ~ N U B, F(x ')  + d y '  <~ F (2'0. Hence,  

F(x ' )  + dry ' ~< min (min(F (1'i), IX2'i)}} ~< I ' .  [ ]  
i E N U B  

As before,  if ~0 - F ~< e then the point (u, v) = argmin(~0) can be accepted as the 
global minimum vertex. If ~O - F still exceeds e, then even though (u, v) may not 
be the global minimum vertex, it may be possible that the solutions provided by 
the 2IN u B I linear programs can be used to eliminate portions of 12 that cannot 
contain (x*, y*). 

More precisely, let i E N U B. If F (a'i)/> ~0(1,o, then it can be shown (Phillips 
and Rosen 1988) that x* ~E'R} 1) and hence R} 1) can be discarded from considera- 
tion. Likewise, if F (2'i) >i ~O (2'I), t h e n  x*  J~'R~ 2) and h e n c e  RI 2) can be discarded 
from consideration. Clearly, if both F (1'~ t> q,(1,i) and F (2'~ t> qj(2,0 then equality 
holds, and the point (u, v) is, in fact, the global minimum point. If some 
subregion is eliminated, then the hyperrectangle R can be reduced in size, and the 
linear underestimating program described in Theorem 1 can be repeated on this 
smaller region. If no subregions can be eliminated, then, as shown in Phillips and 
Rosen  (1990), a bisection of the region R into two smaller subregions may be 
applied so that the initial linear underestimating program can be repeated on both 
of these smaller regions concurrently. 
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In fact, in order to prove convergence of the algorithm to an e-approximate 
solution, it is necessary to require that a sufficiently large fraction of the current 
hyperrectangle be eliminated at every step. By defining the "length" of a side 
[/3,1,/3s2 ] of R to be the product A,(/3s2 -/3,1) 2 where A, is some positive constant, 
then if the length of the longest side of R prior to the subregion elimination step is 
greater than some fraction 3 of its current (i.e., after elimination) length (where 
0 <  ~ < 1 is user specified), then not enough of R was eliminated (e.g., no 
subregions were eliminated and so R has not changed). Hence, eliminate what- 
ever subregions can be eliminated (if any), and bisect the new region along that 
"longest" edge. More precisely, if a bisection of R is to be performed, then let A, 
1 2 , . . . ,  A n be positive constants (whose choice is specified below) and select the 
bisected edge/direction s such that 

)[s(/3s2- /3sl) 2 ~--" max 1~i(/3i2-/3il )2 , i=l,...,n 

and then set/33 := (/3,1 + Bs2)/2, R 1 := {x :x  E R and x, <~/33}, and R 2 := {x :x E 
R and x,/>/33}. If the second derivative of each q~i(xi) exists and is continuous on 
[0,/3i] for i = 1 , . . . ,  n, then the positive constants h i E R can be chosen such that 
I~';(x,.)[ ~< A i, for all x i ~ [0,  /3i] '  i = 1 , . . . ,  n. Regardless of the choice of the Ai, 

the initial linear underestimating program can be repeated on both of these 
smaller regions in parallel, and finite convergence can be guaranteed. 

3. Algorithm 

Based on the previous discussion and theorems, we can present a computational 
algorithm for obtaining a solution to problem (GP). In the following algorithm, 
(u, v) represents the vertex corresponding to the "best" function value ~p (the 
upper bound) at any point in the method, and both of these are globally 
accessible values. All other values are considered to be local to the enclosing 
procedure. 

The method consists of three main parts: procedures ComputeRectangle, 
SolveProblemOverReetangle, and Solve2nLinearPrograms. The main program 
itself is called FastSolution. Step 5 of SolveProblemOverRectangle is the test of the 
sufficient condition since if gs(~-)(z (')) = min{gs(J)(z(J~): j ~ ( B }  >I O, then by 
Theorem 2, the point (x', y ' )  solves problem (GP) and so i f=  ~b(u, v ) =  
~b(x', y').  Steps 10 through 15 of procedure SolveProblemOverReetangle, and in 
particular the call to procedure Solve2nLinearPrograms in Step 11, are heuristic 
steps designed to accelerate convergence of the algorithm by attempting to 
improve the incumbent vertex (x', y ')  and lower bound F', and by attempting to 
eliminate subregions of the hyperrectangle R which cannot contain the global 
optimum vertex. The constant p in step 15, which is required for convergence, 
may be set to any arbitrary positive integer. For more details concerning these 
steps, see Phillips and Rosen (1988). If e > 0  is the desired stopping tolerance, 
then the algorithm can be stated as follows: 
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FastSolution: 
1. ComputeRectangle(R) 
2. SolveProblemOverRectangle(R,F). 
3. The global solution is ~b with corresponding vertex ( u , v )  and lower bound F. 

End FastSolution. 

Procedure ComputeRectangle(R): 
1. Compute the enclosing hyperrectangle R by solving the multiple-cost-row 

linear program 

f l i l =  m i n x  i 
( x , y ) E ~  

for each i = 1 . . . . .  n to get the vertices (x (a), y(1)), (x(2), y ( 2 ) ) , . . . ,  
(x(,), y(n)) and corresponding optimal function values f l q , . . . ,  fin1" Also 
solve the multiple-cost-row linear program 

fl i  2 : m a x  x i (x,y)E~ 

for each i = 1 , . . . ,  n to 
(x(,+2)), y(,+2)) . . . . .  (x(Z,O), y(Zn)) 

values fllz," �9 �9 , fl, z" 
2. Se tR :={x : f lq<-x i<~f l i2  , i = l , . . . , n } ,  

q,:= rain (qJ(x(0, y~i))} 
i = l , . . . , 2 n  

and (u, v ) : =  argmin(~b). 
3. Return R. 

End ComputeRectangle. 

get the vertices (x (n+l), y(n+l)), 
and corresponding optimal function 

SoiveProblemOverRectangle(R, F): 
1. Given the hyperrectangle R = {x:flq<~xi<~ fli2, i =  1 , . . . ,  n}, construct 

the linear function F(x) which agrees with ~(x) at all vertices of R. That is, 
let 

r ( x )  =  i(xi) 
i=1 

where, for i = 1 , . . .  , n ,  Y i (x i )  = c i x  i + rio and 

1 
Cio:  fli2__ [~il ( ~ / ( f l i 2 ) -  ~D/(flil)), and 

1 
"Yio -- [3i2 -- ~i 1 ( [3i2~0i( [3i 1) -- [3ij.~Oi( ~i2)) �9 

2. Let R' = R x R p and solve the linear program 

min F(x) + d y  
( x , y ) ~ n R '  
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t ,  ~b' to get the candidate point (x', y ' ) .  Set F' := F(x')  + dy ,  := 0(x', y ' ) ,  
:= min{qJ, ~ '},  and (u, v):--  argmin(~). Set I : =  1. 

3. If ( ~ - r ' ) / l ~ , l ~  < e then set F : = F '  and go to step (20). 
4. F o r i = l , . . . , n ,  define 

f Cio , - 
Cil = I (~ i (Xi )  -- ~ i ( ~ i l ) ) / ( X ~ -  ~il )  

Ci2= { ~i~i(X;)--  ~Pi( ~i2)) / ( X ; - -  [~i2 ) 

if xl ~ {flq,/3i2 } 
if xl E (/3,-,, fli2) and 

if x~ E { flil , ~i2} 
if x~ E (flq, ~i2) .  

Also define cq = ci2 = Cio - d i for i -- n + 1, n + p,  and cq = ci2 - Cio ~ 0 
for all other non-original problem variables. 

5. Let B be the ordered set of indices of the basic variables at the candidate 
point (x', y ' ) ,  let B i represent the index of the ith basic variable in B, and 
let A~ E R m• be the matrix of columns from A = [A 1 : A2] which corre- 
spond to the basic variables in B. Define w 0) = A~la (j), where a ~ is the 
]th column of A. For each j J~B, define z such that 

z(J)=lcq i f i = B  kandw~ j ) > 0  
i [ci2 otherwise.  

In addition, for each jJgB, define the function g~J) such that 

gU)(Z) = Zj- 2 WU)Z i B i i=l  

and let r ~ ' B  be such that 

g(B~)(z (0) = min { g(BJ)(zO))) . 

If g(B~)(z (*)) >i 0 then set F := F' and go to step (20). 
6. Let  N = {r: r ~ B  and g(~)(z (r)) <0}.  Solve the multiple-cost-row linear 

program 

min z(')'(x) 
(x,y)Eft \ y /  

for each ] E N, to get the candidate points (x ~ yO)). Let tp(x (k), y(k)) = 
min{~(x O), y(J)):j~N}.  Set tp:=min{ff ,  ~p(x (k), y(~)}, and (u,v) := 
argmin(~b). 

7. If ( ~ -  r ' ) / l~ l  ~ e then set F := F' and go to step (20). 
8. If r (k), y(k))  < ~b', then set ~'  := 0(x (k), y(k)) and (x', y ' ) : =  (x (k), y(k)) 

and go to step (4). 
9. Let s E { 1 , . . . ,  n} be such that 

As(13s2-  f l s l )  2 = max ai(~i 2 -- flil )2 . i=1,,..,n 

10. Set OldVolumeOfR :=vo lume(R) ,  and OldLengthOfSidesS:= A,(/3,2- 
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11. Solve2nLinearPrograms(R,F',  ~O'). 
12. If (~  - F ' ) t t ~  1 ~< e then set F := F' and go to step (20). 
13. If ~/,' < q,(x', y ' )  then set (x', y ' )  := argmin(q/) and go to step (4). 
14. If a,(f l ,  2 -  fl,~)2 < OldLengthOfSideS then set I : =  1 and go to step (4). 
15. If volume(R) < OldVolumeOfR and I < p then set I :-= I + 1 and go to step 

(4). 
16. Set f3 :=( f s l+fs2) /2 ,  R ~ : = { x : x E R  and x~<fi3},  and R 2 : = { x : x E R  

and x~ >/f3}" 
17. SolveProblemOverRectangle(R1, F 1). 
18. SolveproblemOverRectangle(R2 ,F2). 
19. Set F := max{F', min{F 1 , F2} }. 
20. Return F. 

End SolveProblemOverRectangle. 

Procedure Solve2nLinearPrograms(R,F',  ~b'): 
1. Given the hyperrectangle R = (x:  f q  ~< xz ~< fz2' i = 1 . . . .  , n}, for each 

i = 1, . .  . ,  n, le t  J~i3 = ( f i l  "~- fli2 ) /2 '  and construct y}O(xi), l~- (2)ext i), ~ and 

Z(xi)  such that y}l)(xi) = cqx i + "Yil' Y } 2 ) ( X i )  = CiaXi -}- 352' and 35(Xi)  = 

c~x~ + 350 where 

1 
% = & - / ~ , ,  ( ~ ' ( & )  - ~ , (&, ) ) ,  

1 
C i 2 -  fli 2 --  f l i  3 ( ~ i ( f l i 2 )  - -  ~i ( f l i 3 ) )  , 

1 
Cio --  f i  2 __ f i  1 (~Oi ( f i3 )  - -  ~t:)i(fil)) , and 

1 
~',1- & _  & (f,,~o,(&) - &,pi(&)) , 

1 
")li2 ~ f i  2 --  f i  3 ( fi2~Oi( f i 3 )  --  [3i3(Pi( f i 2 ) )  , 

350 = f , 2 -  Big, ( & ~ ( & )  - f i ,~ ( f i2 ) ) ,  

2. Let R '  = R x R e. For each i = 1 , . . . ,  n, solve the pair of linear programs 

min ~ yj(x,) + y~~ + d~y and 
( x , y )E~nR '  j = l  

j~ i  

rain ~ y~(x,) + y}2)(xi) + d~y 
(x ,y)E~NR" j = l  

j~ i  

to get the candidate points (x (1"i), yO,O) and (x (2"~ y(2,i)), respectively. 
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3. Denote 

r (1,1) = " . ( 1 ) / . . ( 1 , i ) ~  q_ d t y ( 1 , i )  ")/j(X51'`)) ~- "Yi ~'~i ) 
j= l  
j # i  

. . ( 2 ) t ' ~ ( 2 , i ) ' t  -1- d r y ( 2 , i )  r ( 2 ' i )  = ~ / ] ( x 5 2 ' ~  q- y i  ~,ati ) 
/ = 1  
]#i 

tOO,O= ~p(x(a,;)) + d,y(1,0 ,  and 

tO(:,o = ~p(x(2,;)) + aty(2,o. 

Set 

tO' := min{q/, min {tOu,i), tO(z,o}} and 
i=l,...,n 

r ' : =  max{F', max {min{F O'i), F(2'~ 
i = l , . . . , n  

Set tO := min{tO, tO'} and (u, v) := argmin(tO). 
4. For each i = 1 , . . . ,  n, if F( l ' i )~  > tOo,i) then set /3q:=/3i3. Likewise, if 

F ( 2 , i )  ~ tO(2,i) then set /3~2 :=/3~3. 

5. SetR:={x:f l i<~xi<<-f l~  2 , i = 1 , . . . , n } .  
6. Return R, F', and tO'. 

End Solve2nLinearPrograms. 

4. E r r o r  Bounds  

To analyze the convergence of the algorithm, denote the hyperrectangle at 
iteration k by R (k) = {x: 8 (k) ~< x i ~ fq (k )  i = 1, n}. Referring to steps (11) r - i l  ~ /,.-i2 , �9 �9 �9 , 
through (14) of the algorithm, at the end of iteration k the edge s of "longest 

- -  8 ( l + 1 ) ]  2 ~< max{a , (8  ( k ) -  f l ~ ) ) 2 / 4 ,  6 h s ( j ~  k)  length" satisfies a~(/3~ +1) ~,~ , '-,2 
/3}~))2}. Furthermore, by denoting the linear underestimation error at iteration k 
by e}g)(xi) = q~i(xi) - y}g)(xi) for i =  1 , . . . ,  n, where y}l')(xi) is the linear under- 
estimator described in step (2) of the algorithm, then it can be easily shown that 
for all x i E [8 (~) , 8 (~)1 t l - i l  #- i 2 J 

1 __ /~ (k) -~2 . 
e~k)(xi )  ~ g ~i(~i{k2 ) r-i I i 

Since the sth term of the error e~k)(xs) is the largest of the error terms at 
iteration k, and this term is factored by at least max{1/4, 6 } at iteration k, then at 
some iteration ] all such "lengths" Ai(fii(~ ) - fl}())2 i =  1 , . . . ,  n, will satisfy 

1 o) e~k)(xi)<~-~ hi(Big - /3}~)) 2~<e/n f o r i = l , . . . , n .  

Hence, at some finite iteration ], the error between q~i(xi) and 3,1J)(xi) over R ~ is 
bounded above by e /n  for all i = 1 , . . . ,  n, and thus the error between tO and F is 
bounded above by e and an e-approximate solution has been identified. 
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5. Example 

As an example, consider the concave quadratic function ~(x, y ) =  ~ (x )+  
dry = - 1 / 2 ( 2 x  2 + 8x~). Note that there are no purely linear variables y in this 
example so that ~0(x)-= ~O(x, y ) ~  q~(x) and x E R 2. Also define the polytope 
1 2 = { x l , x 2 ) : x  l + x  2~<10, x 1 + 5 x  2~<22, - 3 x  1 + 2 x  2~<2, - x  1 - 4 x  2<~-4,  x 1 -  
2x 2 ~<4}. The vertices of 12 are (0, 1), (4, 0), (8, 2), (7,3),  and (2, 4) with 
corresponding function values ~0(x)=-4 ,  -16 ,  -80 ,  -85 ,  and 68. Thus, 0 *=  
0(7, 3) = -85.  The feasible region I~ is shown in Figure 1. 

Let  e = 0 and consider the solution procedure used by the algorithm. The initial 
hyperrectangle R = {x : 0 ~< x I ~< 8, 0 ~< x 2 ~< 4} and the initial global incumbent 
function value 0 = - 8 0  at the vertex u = (8, 2). The initial linear underestimator 
of 4J(x) over R is F ( x ) = - 8 x l -  16x 2 which attains its minimum over 12 at 
x '  = (7, 3) with F(7, 3) = -104 and ~0(7, 3) = -85.  Hence, x'  = u -- (7, 3), F' = 
-104 ,  and 0 '  = 0 = -85  (i.e., the global incumbent has been updated). Since the 
current incumbent vertex x' = (7, 3) is strictly interior to R, then n o = 2 and the 
four linear functions described prior to Theorem 1 are given by 7~I)(Xl) = -7Xl, 
3,]2)(xl) = - 1 5 X l - 3 6 ,  y~a~(x2)=-12x1,  and y~21(x2) = -28x  1 - 6 4 .  The or- 
dered set of basic variables at the vertex (7, 3) is B = {xa, x6, x3, x2, XT} and so 
only z (4~ and z (s) need to be computed (since m + n = 7). Constructing z ~ as 
described prior to Theorem 2, z (4> = ( -15,  -28 ,  0, 0, 0, 0, 0) and z ~5)= 
( - 7 ,  -28 ,  0, 0, 0, 0, 0). Hence, g(a)(z(4)) = 0 and g(BS)(z (s)) = 1.75 and the suffi- 
cient conditions are satisfied. 

Since the sufficient conditions have been satisfied at the vertex (7, 3), the global 
incumbent function value 0 = -85  with corresponding vertex (7, 3) is the global 
minimum; that is, 0 *=  -85  and x * =  (7, 3). Note that the lower bound is still 
only F ' =  -104.  

x2 

1 2 3 4 5 6 7 8 

Fig. 1. The feasible region. 
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6. Computational Results 

The computational results in this section were obtained on a Macintosh IIsi (20 
MHz) and, in all of the tests cited, a stopping tolerance of e = 0.001 was used. In 
addition, step (6) of the algorithm states that for'N = { r : r ~ B  and  g(r)(z'(r))~. 0} 

one should solve the multiple-cost-row linear program 

(x.y)ea \ y /  

for each j E N, to get the candidate points (x (j), y(J)). Then let ~O(x (k~, y(k))= 
min{q,(x (j), y ( J ) ) : j ~ N } ,  and set q, := min{g,, q,(x (~), y(k))}, and (u,v)  := 
argmin(O). After considerable computational testing it has been determined that 
if the candidate solution (u, v) is updated by at least one of these linear programs, 
it is also usually updated by the one having the most negative value of the 
function g,(z).  Hence, step (6) of the computational implementation solves only 
the single linear program 

min z(i) ' (x)  
(x ,y)E•  \ y / 

where g(Bi)(Z (])) = min{ gg) (z(r)) : r ~ n }  . 
The class of problems tested were randomly generated concave quadratic 

functions of the following form: 

 o(x) = a , ( x , -  2 , 
i=l  

where v is the unconstrained global maximum of ~o(x), and A i < 0 for i = 1 , . . . ,  n. 
It has been observed (Phillips, Rosen, and van Vliet 1991) that for problems with 
the global maximum v E t2, there exist significantly more local minima than for 
problems of the same dimension with no restriction, on 1,, hence these problems 
should be more difficult to solve. For this reason, all problems were generated in 
such a way that v ~ ~.  Finally, five problems of each size with values of m = 10, 
n E {10, 25, 50}, and p E {0, 25, 50} were tested. 

A summary of the results is presented in Table I. All times reported (rain, avg, 
and max) are CPU seconds required to solve the problem with the sufficient 
conditions test included. The column labeled "% Sufficient Conditions Satisfied" 
lists the percentage of problems solved for which the sufficient conditions were 
satisfied for at least one subproblem. The columns labeled "Time Ratio" list the 
ratio Tsc/T, where Tsc is the CPU time required to solve the problem using the 
sufficient conditions test, and T is the CPU time required to solve the problem 
without the sufficient conditions test. It is clear that the additional computation 
necessary to test the sufficient conditions means that the ratio T J T  < 1 only if 
the total number of iterations required is reduced enough to more than com- 
pensate for the extra computation. 

Based on a simple geometric viewpoint, it would seem clear that if the linear 
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Table I. Concave quadratic test problems 

m n p CPU time (secs) % Sufficient 
conditions 

min avg max satisfied 

Time ratio 

min avg max 

10 10 0 3.52 8.91 18.00 100 
10 10 25 7.00 11.81 17.98 40 
10 10 50 7.57 17.52 28.06 60 
10 25 0 15.33 40.10 93.60 100 
10 25 25 12.25 36.06 63.10 40 
10 25 50 43.45 80.14 134.40 40 
10 50 0 26.55 57.85 128.73 60 
10 50 25 32.88 73.27 105.50 20 
10 .50 50 39.45 2 0 7 . 8 9  365.07 20 

0.69 1.08 1.36 
1.11 1.17 1.26 
0.94 1.10 1.21 
0.96 1.04 1.18 
0.94 1.16 1.49 
1.14 1.32 1.45 
0.93 1.06 1.18 
1.04 1.10 1.22 
1.00 1.25 1.48 

Table II. Concave quadratic test problems with m = 10, n = 50, and p = 25 

CPU Time (secs) 
T (0 = 0.005) T (0 = 1) 

29.42 69.23 
29.6o 32.88 
31.93 105.50 
32.87 58.40 
32.58 100.33 

t e r m  d~y d o m i n a t e s  the  n o n l i n e a r  func t ion  q~(x) ove r  12, t hen  the  p r o b l e m  is m o r e  

l i nea r  in fo rm and  b o t h  the  sufficient  cond i t ions  and  the  e - t o l e r ance  tes t  shou ld  be  

sa t is f ied m o r e  quickly .  To  ver i fy  this p red i c t i on ,  the  set  of  concave  quad ra t i c  tes t  

p r o b l e m s  wi th  m = 10, n = 5 0 ,  and  p = 2 5  were  t e s ted  again  bu t  wi th  the  

n o n l i n e a r  t e r m  q~(x) dampened by a fac tor  0. Tha t  is, the  func t ion  min imized  was 

Oq~(x) + dry, w h e r e  0 = 0.005 was chosen .  In  add i t ion ,  the  e - t o l e r a n c e  tes t  in s tep  

3 was  r e m o v e d  so tha t  t e r m i n a t i o n  could  only  occur  if the  sufficient  cond i t ions  

we re  sa t is f ied in s tep  5 or  if the  e- tes t  was sat isf ied in s teps  7 or  12. T h e  resul ts  

c o m p a r i n g  the  cases  0 = 0.005 and  0 = 1 ( the  or ig ina l  d a m p e n i n g  factor)  a re  g iven 

in T a b l e  I I .  In  four  of  the  five cases wi th  0 = 0.005, the  sufficient  cond i t ions  were  

sa t i s f ied  i m m e d i a t e l y  fo l lowing the  ini t ia l  l inea r  u n d e r e s t i m a t o r ;  hence ,  a to ta l  of  

101 l inea r  p r o g r a m s  were  so lved .  T h e  fifth case r e q u i r e d  one  i m p r o v e m e n t  in the  

i n c u m b e n t  ve r t ex  (over  the  ve r t ex  found  by  the  ini t ia l  l inea r  u n d e r e s t i m a t o r )  and  

thus  a to ta l  of  203 l inea r  p r o g r a m s .  The  e - t o l e r a n c e  was sat isf ied for  this  p r o b l e m  

in s t ep  12 af te r  the  2n sub reg ion  l inea r  p r o g r a m s  were  so lved .  O n  the  o the r  hand ,  

for  0 = 1 four  of  the  five p r o b l e m s  t e s ted  r e q u i r e d  at  leas t  one  d o m a i n  spli t ,  and  

the  suff icient  cond i t ions  we re  sat isf ied in only  one  case.  
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